
ZTP for Factory Workflow

Overview. 1

Hub and edge cluster architecture . 3

Prerequisites . 5

Base . 5

Networking . 5

Storage . 5

General . 7

The Edge-clusters YAML file . 7

Preparing the factory install environment . 12

About the factory install pipeline . 14

Factory install workflow. 15

Hub factory pipeline . 15

The edge factory pipeline. 17

Verifying the hub cluster is ready to run the factory install pipeline . 19

Installing the OpenShift Pipelines Operator . 23

Running the hub cluster factory install pipeline . 25

Monitoring the progress of the hub cluster factory install pipeline . 26

Post hub factory pipeline verification checks. 26

Running the edge cluster factory install pipeline. 30

Monitoring the progress of the edge cluster factory install pipeline . 34

Post edge cluster factory pipeline verification checks . 34

Troubleshooting a pipeline run . 36

Common and expected errors . 41

Configuring the edge cluster at the remote location . 43

ZTP factory install pipelines flags and arguments . 46

Troubleshooting . 47

Troubleshooting a PipelineRun . 47

Debugging a task execution from the container in the cluster. 48

Development . 50

Deploying the environment in Virtual . 50

Build Images . 51

Executing a Pipeline Step. 52

Overview
Zero touch provisioning for factory workflows (ZTPFW) accelerates the deployment of OpenShift
Container Platform with pre-certified hardware and software for rapid edge deployments.

ZTP for factory workflows enables original equipment manufacturer (OEM) partners to pre-install
OpenShift Container Platform at their factory and build turnkey solutions on their hardware. This
approach is well suited to a range of different industries including:

• healthcare

• manufacturing

• aerospace

• media

• entertainment

• retail

• telecommunications

ZTP for factory workflows installs the components that enable you to use OpenShift Container
Platform as a disconnected hub cluster. This hub cluster is then able to deploy edge clusters that
can be shipped off site for final configuration.

At the factory, the OEM partner first deploys a hub OpenShift Container Platform cluster and then
uses the hub cluster to deploy one or more edge clusters at scale.

The hub cluster can be a single-node OpenShift (aka SNO) cluster or a compact cluster and it can
deploy multiple SNO and/or 3 control plane + 1 worker node edge clusters at scale.

NOTE The hub cluster is also known as the factory cluster.

The following are the possible combinations of hub and edgecluster cluster topologies:

Table 1. Cluster topologies

Hub Edge

Compact (3 control plane nodes also able to act
as worker nodes)

3 + 1 (Compact and 1 worker node)

Compact

SNO

SNO (Control plane and worker node on a single
node)

3 + 1

Compact

Single-node OpenShift

Whatever the topology, the hub cluster uses Multcluster Engine (MCE) and the Assisted Installer (AI)
to install edge clusters at scale by using zero touch provisioning (ZTP).

1

After successful completion of the selected edgecluster pipelinerun, the deployed edge cluster can
be shipped to the customer onsite locations. There, the end customer unboxes it and configures the
edge cluster, making it fully operational.

The actual workflow and its details can be checked at the files inside the pipelines folder.

2

Hub and edge cluster architecture
After running all workflows in the hub and edge cluster pipelines, the architecture for a compact
hub and 3 plus 1 edge cluster may resemble the following:

NOTE

In the documentation and particularly with reference to the various scripts invoked
you might see the term edgecluster cluster or edgecluster clusters used. The
preferred term to use in relation to ZTPFWs is edge cluster or edge clusters and they
effectively mean the same thing.

Figure 1. Compact hub and 3 + 1 edge cluster architecture

Every blade in the chassis has access to multiple NICs, which are connected to internal switches.
Switches and NICs are referred to as networks using the name of the interface. The eno4 and eno5
networks are 10gbs networks with enough bandwidth to support the internal and external traffic of
the cluster. The eno4 network is used as the external network. It will be configured by DHCP to
make it easier for the factory to configure and interact with it. This also simplifies the on site
customer configuration. The eno5 network is the internal network. It is only to be accessible from
within the blades (isolated). This network is configured with static IPs and is expected to be used for
the internal traffic of the cluster. The client also connects to this network and uses it to reconfigure
the external connection. The use of the internal interface (eno5) is optional. A vlan on eno4 will be

3

created if no internal NIC is specified in the edgeclusters.yaml file passed to the pipeline/task. In
this case the switch ports should be configured for passing vlan tagged traffic using trunking.

NOTE
The public internet access is initially required when working on the hub and can be
disconnected later after everything is synced. The network interface names eno4
and eno5 are configurable in the edgeclusters.yaml file.

4

Prerequisites
Installer-provisioned installation of OpenShift Container Platform requires:

Base
• OpenShift Cluster with 3 masters

1. All Cluster Operators in good health status

2. Cluster reachable via a KUBECONFIG file

3. The API/API-INT/Ingress should be deployed on the DHCP Ext Network (Factory network)

Networking
• Only one physical nic is required (the NIC used for the DHCP Ext Network). In this case, the

internal network will be a sub-interface from the external network using a vlan tag in the edge
cluster configuration. However, you could define 2 nics in the config yaml file (internal and
external), and the internal network will be another physical interface instead of using vlan tag.

• DNS entries configured and resolvable from both internal and external network, with DNS on
the DHCP Factory network

• HUB

1. api.<hub-domain>.<domain> and api-int.<hub-domain>.<domain> entries should resolve to the
same IP address

2. ingress (*.apps.<hub-domain>.<net-domain>)

• EDGE

1. api.<edgecluster-domain>.<net-domain> and api-int.<edgecluster-domain>.<net-domain>
entries should resolve to the same IP address

2. ingress (*.apps.<edgecluster-domain>.<net-domain>)

• External DHCP with some free IPs on the factory to provide access to the Edge-cluster using the
external network interface

• Every Edge-cluster will need at least ~6 IPs from this External Network (without the broadcast
and network IP)

1. 1 per node

2. 1 API and same for API-INT

3. 1 for the Ingress entry (*.apps.<edgecluster-domain>.<net-domain>)

Storage
• We need some existing PVs on the HUB

5

NOTE

We cannot use emptyDir directive for runninng the pipeline, because between each step in
the pipeline the contents will be removed and we require them to further progress.

1. 3 PVs for MCE: 2 for Assisted Installer + 1 for MCE (the PV size depends on how many
edgeclusters you plan to deploy)

2. 1 for the Hub Internal Registry, the base installation (which includes MCE, MetalLB, OCP
version 4.X, NMState and some more images) we will need at least 900Gb on the Hub side
(Maybe more if you have OCS/ODF deployed).

3. 1 for the HTTPD server, which will host the RHCOS images.

4. We need to meet the OpenShift Storage requirements for the Hub like (SSD/NVME).

5. LSO should be enough but we recommend to use a more reliable storage backend like
ODF or NFS in order to avoid issues with the PVs and node scheduling pods.

• Create a PVC called ztp-pvc that will be used by the hub pipeline itself. You can use the following
yaml to create the PVC.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 annotations:
 name: ztp-pvc
 namespace: edgecluster-deployer
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 volumeMode: Filesystem

• In case you want to use dynamic PV and PVC creation using LVMO - we’ve prepared a Tekton
task to do that:

run-hub-lvmo-task:
 tkn task start -n edgecluster-deployer \
 -p ztp-container-image="$(PIPE_IMAGE):$(BRANCH)" \
 -p edgeclusters-config="$$(cat $(EDGECLUSTERS_FILE))" \
 -p kubeconfig=${KUBECONFIG} \
 -w name=ztp,emptyDir="" \
 --timeout 5h \
 --use-param-defaults hub-deploy-lvmo \
 --showlog

NOTE

You’ll need to make sure that the HUB’s master nodes have one available block device to form

6

the required volume group. The total size of these block devices should be no less than 900GB.

General
• edgeclusters.yaml file with the configuration for the edgeclusters (In this initial version you will

need to bake this file by hand)

• The enclosure is suppose to be just one Edge-cluster which contains 3 masters, 1 worker and 1
Switch L2-L3

• The disks will be encrypted with TPMv2 so if you are using virtual environment using libvirt
instead of physical servers, you will need to do this:

1. Install swtpm package

2. Configure libvirt device section to add: ` <tpm model='tpm-tis'> <backend type='emulator'
version='2.0'/> </tpm> `

Of course, the requirements for the installation of OpenShift Container Platform are also to be
satisfied on the hardware involved in the installation.

The Edge-clusters YAML file
The edgeclusters.yaml file contains all the configuration information required about the setup.

There’s an example in the repo at https://raw.githubusercontent.com/rh-ecosystem-edge/ztp-
pipeline-relocatable/main/examples/config.yaml

As you can check, it has two major sections config and edgeclusters that will be explained in the
next section.

Just keep in mind that the edgeclusters section, can contain several edgecluster-name entries, one
per edgecluster cluster to be deployed by the workflow.

Edge-clusters.yaml walktrough

Check next table for a commented configuration file with links to the explanation to each relevant
file section and configuration value.

config:
 clusterimageset: openshift-v4.10.38
 OC_OCP_VERSION: "4.10.38"
 OC_OCP_TAG: "4.10.38-x86_64"
 OC_RHCOS_RELEASE: "410.84.202210130022-0"
 OC_ACM_VERSION: "2.5"
 OC_ODF_VERSION: "4.10"

edgeclusters:
 - edgecluster1-name:
 master0:
 ignore_ifaces: eno1 eno2

7

https://raw.githubusercontent.com/rh-ecosystem-edge/ztp-pipeline-relocatable/main/examples/config.yaml
https://raw.githubusercontent.com/rh-ecosystem-edge/ztp-pipeline-relocatable/main/examples/config.yaml

 nic_ext_dhcp: eno4
 mac_ext_dhcp: "aa:ss:dd:ee:b0:10"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 master1:
 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 mac_ext_dhcp: "aa:ss:dd:ee:b0:11"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 master2:
 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 mac_ext_dhcp: "aa:ss:dd:ee:b0:12"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 worker0:
 nic_ext_dhcp: eno4
 mac_ext_dhcp: "aa:ss:dd:ee:b0:19"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 - edgecluster2-name:
 master0:

8

 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:20"
 mac_int_static: "aa:ss:dd:ee:b1:20"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 master1:
 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:21"
 mac_int_static: "aa:ss:dd:ee:b1:21"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 master2:
 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:22"
 mac_int_static: "aa:ss:dd:ee:b1:22"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 worker0:
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:29"
 mac_int_static: "aa:ss:dd:ee:b1:29"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"

9

 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd

Table 2. Required parameters

Parameter/Section Description

config This section marks the cluster configuration
values that will be used for installation or
configuration in both Hub and Edge-clusters.

clusterimageset This setting defines the Cluster Image Set used
for the HUB and the Edge-clusters

OC_OCP_VERSION Defines the OpenShift version to be used for the
installation.

OC_OCP_TAG This setting defines version tag to use

OC_RHCOS_RELEASE This is the release to be used

OC_ACM_VERSION Specifies which ACM version should be used for
the deployment

OC_ODF_VERSION This defines the ODF version to be used

edgeclusters This section is the one containing the
configuration for each one of the Edge-cluster
Clusters

edgeclustername This option is configurable and will be the name
to be used for the edgecluster cluster

mastername This value must match master0, master1 or
master2.

ignore_ifaces (Optional) Interfaces to ignore in the host

nic_ext_dhcp NIC connected to the external DHCP

nic_int_static NIC interface name connected to the internal
network

mac_ext_dhcp MAC Address for the NIC connected to the
external DHCP network

mac_int_static MAC Address for the NIC connected to the
internal static network

bmc_url URL for the Baseboard Management Controller

bmc_user Username for the BMC

bmc_pass Password for the BMC

10

Parameter/Section Description

root_disk Mandatory: Disk device to be used for OS
installation

storage_disk List of disk available in the node to be used for
storage

workername Hardcoded name as worker0 for the worker node

11

Preparing the factory install environment
Base prerequisites

• Deploy the OpenShift Container Platform cluster with three control plane nodes following the
guidance in the section Deploying installer-provisioned clusters on bare metal or deploy single-
node OpenShift follow the guidance in Installing on a single node in the OpenShift Container
Platform documentation.

◦ Alternatively you can use the technology preview Assisted Installer from cloud.redhat.com
to create the cluster.

• All cluster Operators are available.

• Cluster is reachable using a KUBECONFIG file.

• The dns names for api.<hub-clustername>.<baseDomain>, api-int.<hub-clustername>.<baseDomain>
and *.apps.<hub-clustername>.<baseDomain> should be resolvable and reachable from edge
clusters via the external DHCP network.

• Metal³ has to be available in the hub cluster.

Storage prerequisites

• Storage can be provided by installing the Local Storage Operator and by using local volumes or
by using OpenShift Data Foundation (ODF).

NOTE
If the cluster is greater than 3 nodes, the recommendation is to use OpenShift
Data Foundation. If it is a single-node OpenShift cluster, use the Local Storage
Operator.

• Create the following persistent volumes with at least 200GB of storage (NVMe or SSD) for:

◦ 2 for Assisted Installer.

◦ 1 for the hub internal registry that is for the mirror of the images. At least 200GB is required
on the hub, more may be required if ODF is installed.

◦ 1 for HTTPD that hosts the Red Hat Enterprise Linux CoreOS (RHCOS) images.

◦ 1 for zero touch provisioning factory workflows (ZTPFW).

◦ 1 for Multicluster Engine (MCE)

Networking prerequisites

The hub cluster requires internet connectivity and should be installed on a private network with
customer configured DNS and DHCP services. Configure DNS to properly resolve all the nodes, the
api, api-int and ingress of the hub cluster. In addition, configure DNS entries for all the edge
clusters you intend to deploy.

You need enough DHCP addresses to host the number of edge clusters you intend to deploy. Each
OpenShift Container Platform node in the cluster must have access to an NTP server. OpenShift
Container Platform nodes use NTP to synchronize their clocks. For example, cluster nodes use SSL

12

https://docs.openshift.com/container-platform/4.10/installing/installing_bare_metal_ipi/ipi-install-prerequisites.html
https://docs.openshift.com/container-platform/4.10/installing/installing_sno/install-sno-installing-sno.html
https://cloud.redhat.com/
https://metal3.io/

certificates that require validation, which might fail if the date and time between the nodes are not
in sync.

Specific requirements are:

• DNS entries need to be configured and resolvable from the external network, with DNS on the
DHCP external network.

• Hub

◦ api.<hub-clustername>.<baseDomain> and api-int.<hub-clustername>.<baseDomain> entries
should resolve to the same IP address.

◦ ingress (*.apps.<hub-clustername>.<baseDomain>).

• Edge

◦ api.<edge-cluster-name>.<baseDomain> and api-int.<edge-cluster-name>.<baseDomain> entries
should resolve to the same IP address.

◦ ingress (*.apps.<edge-cluster-name>.<baseDomain>).

NOTE
When deploying a single-node OpenShift cluster, the api.<edge-cluster-
name>.<baseDomain> and *.apps.<edge-cluster-name>.<baseDomain> must be
configured with different IP addresses.

• External DHCP with enough free IPs on the factory network to provide access to the edge cluster
by using the external network interface.

• Every edge cluster needs at least 5 IPs (in case of SNO at least 3 IPs) on this external network
(excluding the broadcast and network IP).

◦ 1 per node.

◦ 1 for API. Same IP is used for API-INT.

◦ 1 for the Ingress entry (*.apps.<edge-cluster-name>.<baseDomain>).

13

About the factory install pipeline
The factory install pipelines build out your factory environment (hub and edge clusters) for the
edge cluster to reach a state of readiness to be shipped off site. Red Hat has created a set of
community scripts to help you get started with this task.

A GitHub repository contains all the relevant scripts and YAML files you need to provision the hub
cluster and edge clusters.

The edge cluster installation uses a zero touch provisioning (ZTP) approach facilitated by
Multcluster Engine (MCE) using the Assisted Installer (AI) installed as part of running the factory
install pipeline.

With ZTP and AI, you can provision many OpenShift Container Platform edge clusters in a factory-
type setting. MCE manages clusters in a hub and edge architecture, where a single hub cluster
manages many edge clusters. A hub cluster running MCE provisions and deploys the edge clusters
using ZTP and AI. AI provisions OpenShift Container Platform on the bare-metal edge clusters.

14

Factory install workflow
The factory install pipelines build out your factory environment for the edge cluster to reach a state
of readiness to be shipped off site.

The following diagram provides a high level overview of the pipelines used to prepare the edge
clusters:

Figure 2. Hub and edge pipelines

NOTE Some tasks run in parallel.

• Hub deployment: This first part deploys the hub cluster configuration. The assumption being
OpenShift Container Platform and optionally OpenShift Data Foundation is installed with
persistent volumes created with supporting DHCP and DNS configuration.

• Edge deployment: This second part deploys relocatable edge clusters on the preferred
hardware in parallel. When the deployment completes, the hardware where the edge cluster is
installed is shipped to the end customer. The end customer runs some on site configuration
steps and then has a fully operational OpenShift Container Platform cluster.

Hub factory pipeline
The hub configuration pipeline stage prepares the hub cluster to deploy multiple edge clusters for

15

the end customer.

The flow associated with deploying the hub cluster is:

Check hub

The initial stages in the hub pipeline downloads the various tools needed. It downloads jq, oc,
opm and kubectl. It also proceeds to verify that various hub install prerequisites exist before
proceeding, for example it checks the:

• OpenShift Container Platform version.

• Nodes are ready.

• Cluster Operators are ready.

• Metal3 pods are ready.

• Persistent volumes are created.

• DNS requirements are satisfied.

Deploy HTTPD

This step deploys and configures an HTTP server on the hub cluster. It obtains the Red Hat
Enterprise Linux CoreOS (RHCOS) ISO and RootFS images from mirror.openshift.com and
ensures these are hosted on the deployed HTTPD server. These are then available to install on
the edge cluster.

Deploy registry

This step deploys a registry on the hub cluster. The substeps involved in this process are as
follows:

• Deploy the registry on the hub.

• Sync the OpenShift Container Platform and Operator Lifecycle Manager (OLM) images from
Quay and Red Hat registries to the internal registry.

• Update the pull secret globally.

In case you have your own registry already deployed, you should add the next info to the config
yaml file: REGISTRY: <url-registry:port> and update the pull secret with the registry entry (url,
username and password) in order to make easy the authentication in your own registry without
credentials. In this scenario, your own registry will be used as the hub registry in the pipeline.

Deploy MCE

This step installs the Multicluster Engine (MCE) and Assisted Installer on the OpenShift
Container Platform hub cluster.

Transition to disconnected

This step deploys the ImageContentSourcePolicy (ISCP) and the Catalog sources for the hub to
point to itself as a source of the images and operator. From this step forward, the hub cluster is
no longer connected to the Internet.

16

https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/pre-release/

Deploy Assisted Installer

This step ensures the Assisted Installer service supports installing the edge clusters. This step
configures the way the edge cluster is deployed, the certificates, the image sources, the cluster
details, and so on.

At this stage, the hub cluster is ready to install the edge cluster.

The edge factory pipeline
This stage deploys and configures the edge clusters. After this pipeline run is completed, the edge
clusters are ready to be shipped to the end customer’s remote site.

The flow associated with deploying the edge cluster is:

Check hub

This step installs the various tools on the edge cluster that are needed. It downloads jq, oc, opm
and kubectl. It proceeds to verify that various hub install prerequisites exist before proceeding,
for example it checks the:

• OpenShift Container Platform version.

• Nodes are ready.

• Cluster Operators are ready.

• Metal3 pods are ready.

• Persistent volumes are created.

• DNS requirements are satisfied.

Deploy edge

This step starts with the edge cluster provisioning. This process ends with pushing a notification
from the edge cluster to the hub and answering with an ACK.

Deploy NMState and MetalLB

This step deploys the NMState and the MetalLB Operators. NMState creates one profile per node
to obtain an IP from the external network’s DHCP. Then the MetalLB creates a resource called an
AddressPool to build the relationship between the internal and external interface using a
LoadBalancer interface. Finally it creates a service for the API and the ingress. Without this step
you will not be able to access the API or ingress by using the external address.

Deploy OpenShift Data Foundation

This step deploys the Local Storage Operator and also OpenShift Data Foundation (ODF). ODF
and the Local Storage Operator uses disks defined in the storage_disk section of the
edgeclusters.yaml configuration file to create persistent volumes. ODF generates the storage
classes and dynamically provisions the persistent volumes. This provides the storage necessary
to host the disconnected registry images (Quay).

Deploy Quay

This step deploys the Quay Operator and components of Quay, because the end customer needs a
fully supported solution in the edge and the factory is expected to have their own internal

17

registry. This Quay deployment has a small footprint enabling only the features needed to host
an internal registry with basic functions.

Deploy worker

This step deploys the worker node and adds it to the edge cluster.

Deploy UI

The deploy UI stage helps to simplify the configuration of the edge cluster after it is relocated to
the customer’s site.

Detach cluster

This step ensures that everything is correctly configured, it sets the
NodeNetworkConfigurationPolicy (NNCP), and ensures the detached edge cluster will work on
site. During the edge deployment phase the kubeconfig and kubeadmin password are saved in the
hub. The SSH-RSA gets saved in the hub and edge cluster and the newly created edge gets deleted
in MCE. This information is communicated to the end customer and used to complete the edge
cluster configuration on site.

18

Verifying the hub cluster is ready to run the
factory install pipeline
Run the following steps to ensure the hub cluster is ready to run the factory install pipeline.

Prerequisites

• An installed OpenShift Container Platform hub cluster.

• Access to the cluster as a user with the cluster-admin role.

Procedure

1. Verify the status of the nodes:

$ oc get nodes

Example output

NAME STATUS ROLES AGE VERSION
test-master-0 READY master,worker 154m
v1.23.5+9ce5071
test-master-1 READY master,worker 154m
v1.23.5+9ce5071
test-master-2 READY master,worker 154m
v1.23.5+9ce5071

2. Verify the status of the Cluster Operators:

$ oc get co

Example output

NAME VERSION AVAILABLE PROGRESSING
DEGRADED SINCE MESSAGE
authentication 4.10.38 True False
False 110m
baremetal 4.10.38 True False
False 178m
cloud-controller-manager 4.10.38 True False
False 3h
cloud-credential 4.10.38 True False
False 179m
cluster-autoscaler 4.10.38 True False
False 178m
config-operator 4.10.38 True False
False 3h
console 4.10.38 True False

19

False 168m
csi-snapshot-controller 4.10.38 True False
False 178m
dns 4.10.38 True False
False 178m
etcd 4.10.38 True False
False 177m
image-registry 4.10.38 True False
False 172m
ingress 4.10.38 True False
False 173m
insights 4.10.38 True False
False 172m
kube-apiserver 4.10.38 True False
False 175m
kube-controller-manager 4.10.38 True False
False 176m
kube-scheduler 4.10.38 True False
False 175m
kube-storage-version-migrator 4.10.38 True False
False 179m
machine-api 4.10.38 True False
False 175m
machine-approver 4.10.38 True False
False 179m
machine-config 4.10.38 True False
False 102m
marketplace 4.10.38 True False
False 178m
monitoring 4.10.38 True False
False 93m
network 4.10.38 True False
False 3h
node-tuning 4.10.38 True False
False 178m
openshift-apiserver 4.10.38 True False
False 173m
openshift-controller-manager 4.10.38 True False
False 174m
openshift-samples 4.10.38 True False
False 172m
operator-lifecycle-manager 4.10.38 True False
False 179m
operator-lifecycle-manager-catalog 4.10.38 True False
False 178m
operator-lifecycle-manager-packageserver 4.10.38 True False
False 173m
service-ca 4.10.38 True False
False 179m
storage 4.10.38 True Flase

20

False 179m

3. Verify that enough persistent volumes exist and are available:

$ oc get pv

Example output

NAME CAPACITY ACCESS-MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
pv001 200Gi RWO Recycle Available
137m
pv002 200Gi RWO Recycle Available
137m
pv003 200Gi RWO Recycle Available
137m
pv004 200Gi RWO Recycle Available
137m
pv005 200Gi RWO Recycle Available
137m
pv006 200Gi RWO Recycle Available
137m
pv007 200Gi RWO Recycle Available
137m
pv008 200Gi RWO Recycle Available
137m
pv009 200Gi RWO Recycle Available
137m
pv010 200Gi RWO Recycle Available
137m
pv011 200Gi RWX Recycle Available
137m
pv012 200Gi RWX Recycle Available
137m
pv013 200Gi RWX Recycle Available
137m
pv014 200Gi RWX Recycle Available
137m
pv015 200Gi RWX Recycle Available
137m
pv016 200Gi RWX Recycle Available
137m
pv017 200Gi RWX Recycle Available
137m
pv018 200Gi RWX Recycle Available
137m
pv019 200Gi RWX Recycle Available
137m
pv020 200Gi RWX Recycle Available

21

137m

22

Installing the OpenShift Pipelines Operator
Follow this guidance to install the OpenShift Pipelines Operator that is used to run the pipeline.

Prerequisites

• An installed OpenShift Container Platform hub cluster.

• Install the OpenShift CLI (oc).

• Access to the cluster as a user with the cluster-admin role.

• Install git. For guidance on installing git, see Install Git.

Procedure

1. Export the KUBECONFIG environment variable:

$ export KUBECONFIG=<path_to_kubeconfig>/kubeconfig

2. Run the following bash script bootstrap.sh with the KUBECONFIG as a parameter to install the
OpenShift Pipelines Operator:

$ curl -sL https://raw.githubusercontent.com/rh-ecosystem-edge/ztp-pipeline-
relocatable/main/pipelines/bootstrap.sh | bash -s -- ${KUBECONFIG}

This script:

◦ Installs the tkn CLI. This tool manages OpenShift Container Platform pipelines from a
terminal.

◦ Clones the ztp-pipeline-relocatable pipeline repository.

◦ Checks that the correct permissions are set on the hub cluster.

◦ Deploys the OpenShift Pipelines Operator from the Operator Lifecycle Manager (OLM)
catalog.

◦ Creates ZTP pipelines and the associated tasks.

3. Optional: Monitor the progress in the terminal window(a) and/or in the web console(b).

a. In the terminal window you are expected to see an output similar to the following:

>>>> Creating NS edgecluster-deployer and giving permissions to SA edgecluster-
deployer
>>
>>>>>>>
namespace/edgecluster-deployer configured
serviceaccount/edgecluster-deployer configured
clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-0 configured

>>>> Cloning Repository into your local folder

23

https://github.com/git-guides/install-git
https://github.com/rh-ecosystem-edge/ztp-pipeline-relocatable

>>
Cloning into 'ztp-pipeline-relocatable'...
remote: Enumerating objects: 3824, done.
remote: Counting objects: 100% (1581/1581), done.
remote: Compressing objects: 100% (963/963), done.
remote: Total 3824 (delta 963), reused 1163 (delta 589), pack-reused 2243
Receiving objects: 100% (3824/3824), 702.12 KiB | 8.46 MiB/s, done.
Resolving deltas: 100% (2182/2182), done.

>>>> Deploying Openshift Pipelines
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
subscription.operators.coreos.com/openshift-pipelines-operator-rh unchanged
>>>> Waiting for: Openshift Pipelines
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>> Deploying ZTPFW Pipelines and tasks
>>
pipeline.tekton.dev/deploy-ztp-hub configured
pipeline.tekton.dev/deploy-ztp-edgeclusters configured
task.tekton.dev/common-pre-flight configured
task.tekton.dev/hub-deploy-mce configured
task.tekton.dev/hub-deploy-disconnected-registry configured
task.tekton.dev/hub-deploy-httpd-server configured
task.tekton.dev/hub-deploy-hub-config configured
task.tekton.dev/hub-deploy-icsp-hub configured
task.tekton.dev/hub-save-config configured
task.tekton.dev/edgecluster-deploy-disconnected-registry-edgeclusters configured
task.tekton.dev/edgecluster-deploy-icsp-edgeclusters-post configured
task.tekton.dev/edgecluster-deploy-icsp-edgeclusters-pre configured
task.tekton.dev/edgecluster-deploy-metallb configured
task.tekton.dev/edgecluster-deploy-ocs configured
task.tekton.dev/edgecluster-deploy-edgecluster configured
task.tekton.dev/edgecluster-deploy-workers configured
task.tekton.dev/edgecluster-detach-cluster configured
task.tekton.dev/edgecluster-restore-hub-config configured

b. Log in to the OpenShift Container Platform web console.

i. Navigate to Pipelines → Pipelines.

ii. Select the project edgecluster-deployer.

NOTE
Stored in the edgecluster-deployer namespace are all the artifacts for the
successful execution of the pipelines. Monitor the progress of the
pipelines in this window.

24

Running the hub cluster factory install
pipeline
Follow the steps in this section to run the hub factory install pipeline.

Prerequisites

• An installed OpenShift Container Platform hub cluster.

• Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file edgeclusters.yaml with sample details as shown. A sample configuration file is
present in examples/config.yaml.

NOTE
At this stage you only need to build out the config section. The config section
specifies the cluster configuration values used to install and configure the hub
and edge cluster.

config:
 OC_OCP_VERSION: "4.10.38" ①
 OC_ACM_VERSION: "2.5" ②
 OC_ODF_VERSION: "4.10" ③
 REGISTRY: my-own-registry.local:5000 ④

① OpenShift Container Platform version of the edge cluster.

② Multicluster Engine (MCE) version.

③ The OpenShift Data Foundation (ODF) version.

④ This is an optional parameter to set up your own registry already deployed in the hub.

2. Start the hub cluster pipeline from the command line:

$ tkn pipeline start \
-n edgecluster-deployer \
-p edgeclusters-config="$(cat /path-to-edgecluster.yaml/edgeclusters.yaml)" \
-p kubeconfig=${KUBECONFIG} \
-w name=ztp,claimName=ztp-pvc \
--timeout 5h \
--use-param-defaults \
deploy-ztp-hub

NOTE

This command starts the pipeline in the namespace edgecluster-deployer with
the defined edge cluster configuration and the kubeconfig configuration in the
workspace ztp with the previously configured persistent storage claim ztp-pvc.
A timeout of 5 hours is set for the execution of the deploy-ztp-hub pipeline with
all other parameters set to default.

25

Example output

PipelineRun started: deploy-ztp-hub-run-2h44k

In order to track the PipelineRun progress run:
tkn pipelinerun logs deploy-ztp-hub-run-2h44k -f -n edgecluster-deployer

Monitoring the progress of the hub cluster factory
install pipeline
You can watch the progress of the pipeline by using the OpenShift Container Platform web console
and using the deployment log file.

Procedure

1. Examine the logs to watch the progress of the deploy-ztp-hub:

$ tkn pipeline logs deploy-ztp-hub-run-2h44k -f -n edgecluster-deployer

2. Log in to the OpenShift Container Platform web console.

3. Navigate to Pipelines → Pipelines and select the Project edgecluster-deployer.

NOTE
The edgecluster-deployer project stores all the artifacts for OpenShift Container
Platform Pipelines.

4. Select PipelineRuns to drill down into detail on the pipeline runs.

5. The stages of the pipeline are clearly shown and you can select each in turn to view the logs
associated with that stage of the deployment.

Post hub factory pipeline verification checks
Perform the following steps after completion of the hub factory pipeline run.

Prerequisites

• An OpenShift Container Platform hub cluster.

• Log in as a user with cluster-admin privileges.

Procedure

1. Verify MCE is successfully installed:

$ oc get pod -n multicluster-engine

Example output

NAME READY STATUS

26

RESTART AGE
application-chart-ee7d2-applicastionui-7d99756554-jrs24 1/1 RUNNING 0
6m31s
application-chart-ee7d2-applicastionui-7d99756554-jrs24 1/1 RUNNING 0
6m31s
application-chart-ee7d2-applicastionui-7d99756554-jrs24 1/1 RUNNING 0
6m31s
application-chart-ee7d2-applicastionui-7d99756554-jrs24 1/1 RUNNING 0
6m31s
assisted-image-service-67489b657b-68qtg 1/1 RUNNING 0
2m30s
assisted-service-5b8874ffd9-rjrg 2/2 RUNNING 1
(2m19s ago) 2m30s

2. Verify the HTTPD server is successfully running:

$ oc get pod -n default

Example output

NAME READY STATUS RESTART AGE
httpd-5479bfd6cb-2p1d4 1/1 RUNNING 0 150m

3. Verify the internal registry is running:

$ oc get pod -n ztpfw-registry

Example output

NAME READY STATUS RESTART AGE
ztpfw-registry-77ff664d47 1/1 RUNNING 0 151m

4. Review the pipeline run and verify the steps that were executed:

NOTE
This shows the duration of every step and the parameters supplied to the
pipeline. It also highlights any issues during the execution of the pipeline.

$ tkn pr describe -n edgecluster-deployer

Example output

Name: deploy-ztp-hub-run-tjqp5
Namespace: edgecluster-deployer
Pipeline Ref: deploy-ztp-hub
Service Account: pipeline

27

Timeout: 5h0m0s
Labels:
 tekton.dev/pipeline=deploy-ztp-hub

ἲ�️ Status

STARTED DURATION STATUS
1 week ago 21 minutes Succeeded

὎� Resources

 No resources

⚓ Params

 NAME VALUE
 ∙ kubeconfig /root/.kcli/clusters/test-ci/auth/kubeconfig
 ∙ edgeclusters-config config:
 OC_OCP_VERSION: '4.10.38'
 OC_ACM_VERSION: '2.5'
 OC_ODF_VERSION: '4.10'
edgeclusters:
 ∙ ztp-container-image quay.io/ztpfw/pipeline:latest

Ὅ� Results

 No results

Ὄ� Workspaces

 NAME SUB PATH WORKSPACE BINDING
 ∙ ztp --- PersistentVolumeClaim (claimName=ztp-pvc)

὜� Taskruns

 NAME TASK NAME
STARTED DURATION STATUS
 ∙ deploy-ztp-hub-run-tjqp5-deploy-hub-config-26pp5 deploy-hub-config
1 week ago 42 seconds Succeeded
 ∙ deploy-ztp-hub-run-tjqp5-deploy-icsp-hub-5ctsr deploy-icsp-hub
1 week ago 16 seconds Succeeded
 ∙ deploy-ztp-hub-run-tjqp5-deploy-mce-76b6c deploy-mce
1 week ago 9 minutes Succeeded
 ∙ deploy-ztp-hub-run-tjqp5-deploy-disconnected-registry-7b9rw deploy-
disconnected-registry 1 week ago 11 minutes Succeeded
 ∙ deploy-ztp-hub-run-tjqp5-deploy-httpd-server-9mfcn deploy-httpd-
server 1 week ago 8 seconds Succeeded
 ∙ deploy-ztp-hub-run-tjqp5-pre-flight-pk5bp pre-flight
1 week ago 9 seconds Succeeded

⏭️ Skipped Tasks

28

 No Skipped Tasks

29

Running the edge cluster factory install
pipeline
Follow the steps in this section to run the edge factory install pipeline.

Prerequisites

• The external network’s DHCP range should have enough IPs for the edge cluster.

• The following API, API-INT and ingress DNS entries are resolvable:

◦ api.<edge-cluster-name>.<network-domain>

◦ api-int.<edge-cluster-name>.<network-domain>

◦ *.apps.<edge-cluster-name>.<network-domain>

NOTE
When deploying a single-node OpenShift cluster, the api.<edge-cluster-
name>.<baseDomain> and *.apps.<edge-cluster-name>.<baseDomain> must be
configured with different IP addresses.

• Clean disks for the OpenShift Data Foundation Storage cluster.

• An OpenShift Container Platform hub cluster.

• DNS Resolution between the edge and the hub API and ingress entries.

• Log in as a user with cluster-admin privileges.

Procedure

1. Edit the edgeclusters.yaml with sample details as shown. A sample configuration file is present
in examples/config.yaml.

NOTE At this stage you are populating the edgeclusters section.

config:
 OC_OCP_VERSION: "4.10.38"
 OC_ACM_VERSION: "2.5"
 OC_ODF_VERSION: "4.10"
 REGISTRY: myregistry.local:5000 ①

edgeclusters:
 - edgecluster1-name: ②
 config:
 tpm: false
 master0: ③
 ignore_ifaces: eno1,eno2 ④
 nic_ext_dhcp: eno4 ⑤
 nic_int_static: eno5 ⑥
 mac_ext_dhcp: "aa:ss:dd:ee:b0:10" ⑦
 mac_int_static: "aa:ss:dd:ee:b1:10" ⑧
 bmc_url: "<url bmc>" ⑨

30

 bmc_user: "user-bmc" ⑩
 bmc_pass: "user-pass" ⑪
 root_disk: /dev/sda ⑫
 storage_disk: ⑬
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 master1:
 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:11"
 mac_int_static: "aa:ss:dd:ee:b1:11"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 master2:
 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:12"
 mac_int_static: "aa:ss:dd:ee:b1:12"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 worker0: ⑭
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:19"
 mac_int_static: "aa:ss:dd:ee:b1:19"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde

31

 - /dev/sdd
 - edgecluster2-name:
 master0:
 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:20"
 mac_int_static: "aa:ss:dd:ee:b1:20"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 master1:
 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:21"
 mac_int_static: "aa:ss:dd:ee:b1:21"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 master2:
 ignore_ifaces: eno1 eno2
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:22"
 mac_int_static: "aa:ss:dd:ee:b1:22"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd
 worker0:
 nic_ext_dhcp: eno4
 nic_int_static: eno5
 mac_ext_dhcp: "aa:ss:dd:ee:b0:29"

32

 mac_int_static: "aa:ss:dd:ee:b1:29"
 bmc_url: "<url bmc>"
 bmc_user: "user-bmc"
 bmc_pass: "user-pass"
 root_disk: /dev/sda
 storage_disk:
 - /dev/sdb
 - /dev/sdc
 - /dev/sde
 - /dev/sdd

① This parameter is optional just in case you want to use your own registry already deployed.
Remember, if you are using your own registry, the pull secret must contains the information
related to the entry (url, username and password)

② This option is configurable and sets the name of the edge cluster.

③ This value must match master0, master1 or master2.

④ Optional: Interfaces to ignore in the host.

⑤ NIC connected to the external DHCP.

⑥ NIC connected to the internal network (This interface is optional).

⑦ MAC address for the NIC connected to the external DHCP network.

⑧ MAC address for the NIC connected to the internal network (This MAC address is optional if
we’re using only 1 interface nic in <5>).

⑨ URL for the Baseboard Management Controller (BMC).

⑩ The BMC username.

⑪ The BMC password.

⑫ Mandatory: Disk device to be used for operating system installation.

⑬ List of disk available in the node to be used for storage.

⑭ Hardcoded name set as worker0 for the worker node.

2. Set the following environment variable:

$ export KUBECONFIG=<path_to_kubeconfig>/kubeconfig-file

3. Start the edge cluster pipeline from the command line:

$ tkn pipeline start \
-n edgecluster-deployer \
-p edgeclusters-config="$(cat /path-to-edgecluster-yaml/edgeclusters.yaml)" \
-p kubeconfig=${KUBECONFIG} \
-w name=ztp,claimName=ztp-pvc \
--timeout 5h \
--use-param-defaults \

33

deploy-ztp-edgeclusters

NOTE

This command starts the pipeline in the namespace edgecluster-deployer with
the defined configuration and the kubeconfig configuration in the workspace ztp
with the previously configured persistent storage claim ztp-pvc. A timeout of 5
hours is set for the execution of the deploy-ztp-edgecluster pipeline with all
other parameters set to default.

Example output

PipelineRun started: deploy-ztp-edgecluster-run-2rklt

In order to track the PipelineRun progress run:
tkn pipeline logs deploy-ztp-edgecluster-run-2rklt -f -n edgecluster-deployer

Monitoring the progress of the edge cluster factory
install pipeline
You can watch the progress of the pipelines by using the OpenShift Container Platform web console
and by using the deployment log file.

Procedure

1. Examine the logs to watch the progress of the deploy-ztp-edgeclusters.

$ tkn pipeline logs deploy-ztp-edgecluster-run-2rklt -f -n edgecluster-deployer

2. Log in to the OpenShift Container Platform web console.

3. Navigate to Pipelines → Pipelines and select the Project edgecluster-deployer.

NOTE
The edgecluster-deployer pipeline stores all the artefacts for OpenShift
Container Platform Pipelines.

4. Select PipelineRuns to drill down into the details of the pipeline runs.

5. The stages of the pipeline are clearly shown and you can select each in turn to view the logs
associated with that stage of the deployment.

Post edge cluster factory pipeline verification checks
Perform the following steps after completion of the edge cluster factory pipeline run.

Prerequisites

• A successfully deployed edge cluster.

• Log in as a user with cluster-admin privileges.

34

Procedure

1. Verify MetalLB is successfully installed:

$ oc get addresspool -A

Example output

NAMESPACE NAME AGE
metallb api-public-ip 10m
metallb ingress-public-ip 10m

2. Confirm that the NodeNetworkConfigurationPolicy has been applied to the cluster:

$ oc get nncp -A

Example output

NAME STATUS
kubeframe-edgecluster-0-master-0-nccp Available
kubeframe-edgecluster-0-master-1-nccp Available
kubeframe-edgecluster-0-master-2-nccp Available

3. Verify the internal registry is running:

$ oc get pod -n ztpfw-registry

Expected output

NAME READY STATUS RESTART AGE
ztpfw-registry-77ff664d47 1/1 RUNNING 0 151m

4. Run the following command to review the pipeline run and verify the steps that were executed:

NOTE
This shows the duration of every step, the parameters supplied to the pipeline. It
also highlights any issues during the execution of the pipeline.

$ tkn pr describe deploy-ztp-edgecluster-run-2rklt -n edgecluster-deployer

35

Troubleshooting a pipeline run
Perform the following steps to debug a pipeline run.

Procedure

1. Export the KUBECONFIG as follows:

$ export KUBECONFIG=<path_to_kubeconfig>/kubeconfig

2. List the executed pipeline runs:

$ tkn pr ls -A

Example output

NAMESPACE NAME STARTED DURATION STATUS
edgecluster-deployer deploy-ztp-edgeclusters-run-sp8hm 1 hour ago 1 hour
Cancelled(PipelineRunCancelled)
edgecluster-deployer deploy-ztp-hub-run-rwh4j 2 hours ago 35 minutes
Succeeded
edgecluster-deployer deploy-ztp-hub-run-vgwz6 3 hours ago 2 minutes
Failed

3. Run the following command against the failed pipeline run name and identify the failed task:

$ tkn pr describe deploy-ztp-hub-run-vgwz6 -n edgecluster-deployer

Example output

Name: deploy-ztp-hub-run-vgwz6
Namespace: edgecluster-deployer
Pipeline Ref: deploy-ztp-hub
Service Account: pipeline
Timeout: 5h0m0s
Labels:
 tekton.dev/pipeline=deploy-ztp-hub

ἲ�️ Status

STARTED DURATION STATUS
3 hours ago 2 minutes Failed

Ὀ� Message

Tasks Completed: 3 (Failed: 1, Cancelled 0), Skipped: 3 ("step-mirror-olm" exited
with code 255 (image:

36

"quay.io/ztpfw/pipeline@sha256:d86d567f0ee76efdd5ea168fac3cbd5e8e7e479ddcea0be6aaf9
e890de9566b3"); for logs run: kubectl -n edgecluster-deployer logs deploy-ztp-hub-
run-vgwz6-deploy-disconnected-registry-xqz-kltxr -c step-mirror-olm
)

὎� Resources

 No resources

⚓ Params

 NAME VALUE
 ∙ kubeconfig /root/.kcli/clusters/test-ci/auth/kubeconfig
 ∙ edgeclusters-config config:
 OC_OCP_VERSION: '4.10.38'
 OC_ACM_VERSION: '2.5'
 OC_ODF_VERSION: '4.10'
edgeclusters:
 ∙ ztp-container-image quay.io/ztpfw/pipeline:latest

Ὅ� Results

 No results

Ὄ� Workspaces

 NAME SUB PATH WORKSPACE BINDING
 ∙ ztp --- PersistentVolumeClaim (claimName=ztp-pvc)

὜� Taskruns

 NAME TASK NAME
STARTED DURATION STATUS
 ∙ deploy-ztp-hub-run-vgwz6-deploy-disconnected-registry-xqzz5 deploy-
disconnected-registry 3 hours ago 4 minutes Failed
 ∙ deploy-ztp-hub-run-vgwz6-deploy-httpd-server-6n47b deploy-httpd-
server 3 hours ago 56 seconds Succeeded
 ∙ deploy-ztp-hub-run-vgwz6-pre-flight-slvkv pre-flight
3 hours ago 36 seconds Succeeded

⏭️ Skipped Tasks

 NAME
 ∙ deploy-mce
 ∙ deploy-icsp-hub
 ∙ deploy-hub-config

4. Run the following command against the failed taskrun name to find the reason for the failure:

$ tkn tr describe deploy-ztp-hub-run-vgwz6-deploy-disconnected-registry-xqzz5 -n

37

edgecluster-deployer

Example output

Name: deploy-ztp-hub-run-vgwz6-deploy-disconnected-registry-xqzz5
Namespace: edgecluster-deployer
Task Ref: hub-deploy-disconnected-registry
Service Account: pipeline
Timeout: 5h0m0s
Labels:
 app.kubernetes.io/managed-by=tekton-pipelines
 tekton.dev/memberOf=tasks
 tekton.dev/pipeline=deploy-ztp-hub
 tekton.dev/pipelineRun=deploy-ztp-hub-run-vgwz6
 tekton.dev/pipelineTask=deploy-disconnected-registry
 tekton.dev/task=hub-deploy-disconnected-registry

ἲ�️ Status

STARTED DURATION STATUS
3 hours ago 4 minutes Failed

Message

"step-mirror-olm" exited with code 255 (image:
"quay.io/ztpfw/pipeline@sha256:d86d567f0ee76efdd5ea168fac3cbd5e8e7e479ddcea0be6aaf9
e890de9566b3"); for logs run: kubectl -n edgecluster-deployer logs deploy-ztp-hub-
run-vgwz6-deploy-disconnected-registry-xqz-kltxr -c step-mirror-olm

὎� Input Resources

 No input resources

὎� Output Resources

 No output resources

⚓ Params

 NAME VALUE
 ∙ edgeclusters-config config:
 OC_OCP_VERSION: '4.10.38'
 OC_ACM_VERSION: '2.5'
 OC_ODF_VERSION: '4.10'
edgeclusters:
 ∙ kubeconfig /root/.kcli/clusters/test-ci/auth/kubeconfig
 ∙ ztp-container-image quay.io/ztpfw/pipeline:latest
 ∙ mock false

38

Ὅ� Results

 No results

Ὄ� Workspaces

 NAME SUB PATH WORKSPACE BINDING
 ∙ ztp --- PersistentVolumeClaim (claimName=ztp-pvc)

ᾛ� Steps

 NAME STATUS
 ∙ update-global-pullsecret Error
 ∙ deploy-disconnected-registry Completed
 ∙ mirror-ocp Completed
 ∙ mirror-olm Error

Ὡ� Sidecars

No sidecars

5. Debug a task execution from the container in the cluster as follows:

a. Get all pods in the edgecluster-deployer namespace:

$ oc get pod -n edgecluster-deployer

Example output

NAME READY STATUS
RESTARTS AGE
deploy-ztp-hub-run-rwh4j-deploy-mce-k92kf-pod-85n7t 0/1
Completed 0 159m
deploy-ztp-hub-run-rwh4j-deploy-disconnected-registry-8j9-rk469 0/4
Completed 0 3h2m
deploy-ztp-hub-run-rwh4j-deploy-httpd-server-fw49r-pod-lhkxf 0/1
Completed 0 3h2m
deploy-ztp-hub-run-rwh4j-deploy-hub-config-vmgf2-pod-cjg72 0/1
Completed 0 149m
deploy-ztp-hub-run-rwh4j-deploy-icsp-hub-c7tg7-pod-ntmqp 0/1
Completed 0 149m
deploy-ztp-hub-run-rwh4j-pre-flight-865p2-pod-6wmj4 0/1
Completed 0 3h3m
deploy-ztp-edgeclusters-run-sp8hm-deploy-icsp-edgeclusters-pre-76thd--2pg7t
0/1 Completed 0 97m
deploy-ztp-edgeclusters-run-sp8hm-deploy-metallb-d7cnj-pod-rmbcg 0/1
Completed 0 94m
deploy-ztp-edgeclusters-run-sp8hm-deploy-ocs-k7hf9-pod-7rwwq 0/1
Completed 0 92m
deploy-ztp-edgeclusters-run-sp8hm-deploy-edgeclusters-pmbnz-pod-kp5fc

39

0/2 Completed 0 123m
deploy-ztp-edgeclusters-run-sp8hm-pre-flight-zwdsn-pod-l2v7h 0/1
Completed 0 123m
edgecluster-deploy-disconnected-registry-edgeclusters-run-t6k2d-pod-cnm5t
4/4 NotReady 0 34s

b. Log in to the pod in NotReady state:

$ oc debug pod/edgecluster-deploy-disconnected-registry-edgeclusters-run-t6k2d-
pod-cnm5t -n edgecluster-deployer

Example output

Defaulting container name to step-deploy-disconnected-registry.
Use 'oc describe pod/edgecluster-deploy-disconnected-registry-edgeclusters-run-
t6k2d-pod-cnm5t-debug -n edgecluster-deployer' to see all of the containers in
this pod.

Starting pod/edgecluster-deploy-disconnected-registry-edgeclusters-run-t6k2d-
pod-cnm5t-debug, command was: /tekton/tools/entrypoint -wait_file
/tekton/downward/ready -wait_file_content -post_file /tekton/tools/0
-termination_path /tekton/termination -step_metadata_dir /tekton/steps/step-
deploy-disconnected-registry -step_metadata_dir_link /tekton/steps/0 -docker
-cfg=pipeline-dockercfg-t6ccl -entrypoint /tekton/scripts/script-0-mm64m --
Pod IP: 10.134.0.53
If you don't see a command prompt, try pressing enter.
sh-4.4#

40

Common and expected errors
A common issue that may occur during the ZTP pipelines run is a failure during the check hub
stage.

During the run of deploy registry stage of the hub cluster pipeline kubelet is restarted and access
to the Kubernetes API is temporarily interrupted. This is expected and an error message similar to
the following is printed.

[deploy-disconnected-registry : deploy-disconnected-registry]
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
[deploy-disconnected-registry : deploy-disconnected-registry] Creating
/workspace/ztp/build/edgeclusters.yaml from SPOKES_CONFIG
[deploy-disconnected-registry : deploy-disconnected-registry] Waiting for deployment
of ztpfw-registry in namespace ztpfw-registry with a timeout 1000 seconds
[deploy-disconnected-registry : deploy-disconnected-registry] Expected generation for
deployment ztpfw-registry: 1
[deploy-disconnected-registry : deploy-disconnected-registry] Observed expected
generation: 1
[deploy-disconnected-registry : deploy-disconnected-registry] Specified replicas: 1
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry]
current/updated/available replicas: 1/1/, waiting
[deploy-disconnected-registry : deploy-disconnected-registry] Deployment ztpfw-
registry successful. All 1 replicas are ready.
[deploy-disconnected-registry : deploy-disconnected-registry]
machineconfig.machineconfiguration.openshift.io/update-localregistry-ca-certs created

41

[deploy-disconnected-registry : deploy-disconnected-registry] Mode: hub
[deploy-disconnected-registry : deploy-disconnected-registry] >> Waiting for the MCO
to grab the new MachineConfig for the certificate...

failed to get logs for task deploy-disconnected-registry : error in getting logs for
step mirror-ocp: error getting logs for pod deploy-ztp-hub-run-wt5kr-deploy-
disconnected-registry-kxm-585tz(step-mirror-ocp) : Get
"https://192.168.150.190:10250/containerLogs/edgecluster-deployer/deploy-ztp-hub-run-
wt5kr-deploy-disconnected-registry-kxm-585tz/step-mirror-ocp?follow=true": dial tcp
192.168.150.190:10250: connect: connection refused
failed to get logs for task deploy-disconnected-registry : error in getting logs for
step mirror-olm: error getting logs for pod deploy-ztp-hub-run-wt5kr-deploy-
disconnected-registry-kxm-585tz(step-mirror-olm) : Get
"https://192.168.150.190:10250/containerLogs/edgecluster-deployer/deploy-ztp-hub-run-
wt5kr-deploy-disconnected-registry-kxm-585tz/step-mirror-olm?follow=true": dial tcp
192.168.150.190:10250: connect: connection refused

42

Configuring the edge cluster at the remote
location
Configure the edge cluster by using the custom user interface.

NOTE
Some of the commands need root access to run. You can either log in as the root
user and proceed with the step or add sudo before every command.

Prerequisites

• kubeadmin password as supplied by vendor.

• URL of the custom user interface.

Procedure

1. Unbox and turn on the cluster.

2. Log in at the command line to master-0 of the cluster:

3. Configure DNS on master-0 of the hub cluster:

a. Edit resolv.conf on master-0 and add the IP address of master-0.

$ vi /etc/resolv.conf

b. Add the line.

nameserver 192.168.7.10

4. Configure a static IP on the connected laptop:

a. Determine the name of the laptop’s network interface card (NIC) as follows.

$ ip addr

NOTE Look for the NIC name starting with the letter e.

b. Edit the NIC’s network configuration.

$ vi /etc/sysconfig/network-scripts/ifcfg-eth0

NOTE
Here eth0 is the network card name, and it can be different for different
computers.

c. Add or modify the configuration below:

43

BOOTPROTO=static
IPADDR=192.168.7.21
NETMASK=255.255.255.0
GATEWAY=192.168.7.1
DNS1=192.168.7.10

NOTE Use any IP in the range 192.168.7.20 - 192.168.7.150.

5. Restart the network services:

$ systemctl restart NetworkManager

6. Open a browser and log in to the edge cluster configuration user interface at the following URL
with the supplied kubeadmin username and password:

https://edge-cluster-setup.example-edge-cluster.domain.com

NOTE
This kubeadmin username and password was created at the factory and should
have been supplied to you. Only one user is initially created.

7. Click Continue.

8. Step through the screens to complete the initial setup.

a. In the first two screens create a new user account by entering a username and password when
prompted.

NOTE
This new user account is granted cluster-admin privileges and should be
used rather than the factory created kubeadmin account.

b. In the API screen assign the IP address that will be used for API traffic. The default value
should be replaced with an IP from the respective subnet.

c. In the Ingress screen assign the IP address that will be used for new routes and traffic
managed by the ingress controller. The default value should be replaced with an IP from the
respective subnet.

d. Optional: Enter the name of base domain for your edge cluster (e.g. yourdomain.com)

NOTE

The new and the old domain names should be both properly configured in
DNS. Aditional screen will be displayed for chosing how to create certificates
for the new domain. When Automatic method is selected (default), then all
the certificates will be automatically generated and assigned. If Manual
method is selected, then we can chose between uploading or automatically
generating specific certificates.

e. Click Download in the Download your private SSH key screen and download the edge

44

cluster private SSH key.

NOTE You need this to access the nodes of the edge cluster.

f. Click Finish setup.

NOTE

This will initiate the process of applying changes to the edge cluster. It might
take several minutes for the cluster to reconcile. If the domain name was not
changed, then upon success you should get to a page with "Setup complete!"
at the top. In case the domain name was changed, you will be redirected to
the edge-cluster-setup page of the new domain, where you will have to login
agan.

g. Under Settings you have the option to delete the kubeadmin user and to change the values
of the API address, Ingress address and the Domain name.

NOTE
Deleting the kubeadmin user is recommended. This action is irreversible. At
this stage you will not be prompted for a username and password as you are
already logged in as kubeadmin.

h. Click Log out in the top right hand corner. This concludes working with the edge cluster
configuration user interface.

9. Log in to the web console of your edge cluster.

10. Select the newly created identity provider ztpfw-htpasswd-idp.

11. In the cluster log in screen enter the username and password created in step 8a.

12. After you access the cluster, register your cluster subscription with the following steps:

a. Log in to the console to register the disconnected OpenShift cluster. See How to register
disconnected OpenShift Container Platform 4 cluster on cloud.redhat.com for details.

b. Obtain the pull secret from Pull secret, which can be found under Tokens.

c. Change the global pull secret. Follow the guidance in How to change the global pull secret in
OCP 4 to do that.

Your cluster is now registered to Red Hat OpenShift Cluster Manager and entitled to Red Hat
subscription management.

45

https://cloud.redhat.com/
https://access.redhat.com/solutions/4930131
https://access.redhat.com/solutions/4930131
https://console.redhat.com/openshift/downloads
https://access.redhat.com/solutions/4902871
https://access.redhat.com/solutions/4902871

ZTP factory install pipelines flags and
arguments
The pipeline arguments and flags are described in the following tables.

Table 3. Pipeline flags

Flag Description

-n edgecluster-deployer OpenShift Container Platform namespace where the resources are
located. It is mandatory to use the edgecluster-deployer namespace.

-p Pipeline parameter.

--timeout Pipeline general timeout.

--use-param-defaults Sets default values for not specified params. You can get the list of
params by running oc get pipeline <PIPELINE NAME> -o
jsonpath='{range .spec.params[*]}{.name}{"\n"}{end}'.

-w The workspace parameter sets where OpenShift Container Platform
pipelines hold the files during every step. Do not use EmptyDir. The
best choice is name=ztp,claimName=ztp-pvc. The persistent volume
claim is created during the bootstrap.sh execution. It does not need
more than 5Gb.

Table 4. Pipeline arguments

Flag Description Required

Namespace This is a namespace where all the Tasks and
Pipelines will be deployed.

Yes

edgeclusters-config This edgeclusters.yaml file has the configuration
for all the clusters you want to deploy at the
same time. Run it with the cat command.

Yes

kubeconfig This is the hub kubeconfig that is used during the
pipeline execution. You can point to the file or
just use the KUBECONFIG variable.

Yes

-w name=ztp,claimName=ztp-
pvc

It is mandatory to use this argument exactly as
it’s shown here to have a successful run. This
declaration instructs Tekton to use the
workspace ztp and that the content should be
placed in the ztp-pvc persistent volume.

Yes

Pipeline Name In the command examples, this is the last
argument. This flag instructs Tekton to run the
pipeline with the particular name. You can
examine the executed pipelines and tasks with
tkn pr ls and tkn tr ls respectively.

Yes

46

Troubleshooting

Troubleshooting a PipelineRun
To debug the Hub Pipeline you just need to

• List the executed PipelineRuns

export KUBECONFIG=<PATH TO KUBECONFIG>
tkn pr ls

• Grab the failed PipelineRun Name and identify the failed Task

tkn pr describe deploy-ztp-edgeclusters-run-wll7j

• Grab the failed Taskrun Name and examine it

tkn tr describe deploy-ztp-edgeclusters-run-wll7j-detach-cluster-ptswr

47

Debugging a task execution from the container in the
cluster

[root@flaper87-baremetal02 ~]# oc get pod -n edgecluster-deployer
NAME READY STATUS RESTARTS AGE
deploy-ztp-hub-run-96tnl-deploy-disconnected-registry-4m2-5ts85 2/4 NotReady 0 6m32s
deploy-ztp-hub-run-96tnl-deploy-httpd-server-rlrwq-pod-wsh5k 0/1 Completed 0 6m41s
deploy-ztp-hub-run-96tnl-fetch-from-git-zl7m5-pod-fck69 0/1 Completed 0 6m59s
deploy-ztp-hub-run-96tnl-pre-flight-rgdtr-pod-2gmh6 0/1 Completed 0 6m50s

[root@flaper87-baremetal02 ~]# oc debug pod/deploy-ztp-hub-run-96tnl-deploy-
disconnected-registry-4m2-5ts85 -n edgecluster-deployer
Defaulting container name to step-deploy-disconnected-registry.
Use 'oc describe pod/deploy-ztp-hub-run-96tnl-deploy-disconnected-registry-4m2-5ts85-
debug -n edgecluster-deployer' to see all of the containers in this pod.

48

Starting pod/deploy-ztp-hub-run-96tnl-deploy-disconnected-registry-4m2-5ts85-debug,
command was: /tekton/tools/entrypoint -wait_file /tekton/downward/ready
-wait_file_content -post_file /tekton/tools/0 -termination_path /tekton/termination
-step_metadata_dir /tekton/steps/step-deploy-disconnected-registry
-step_metadata_dir_link /tekton/steps/0 -docker-cfg=pipeline-dockercfg-w6xlw
-entrypoint /tekton/scripts/script-0-x6mfw --
Pod IP: 10.134.0.60
If you don't see a command prompt, try pressing enter.
sh-4.4# cd /workspace/ztp/

49

Development
NOTE

This documentation it’s mostly for the developers/qes etc… working in the project.

Deploying the environment in Virtual
This is a very expensive option to work with all nodes in virtual, which means, you will need a big
boy to make this work:

Hardware requirements

Hardware Reqs for the Hub (3 Nodes):

• CPUs: 48 (16 each)

• RAM: 54 Gbs (18 each)

• Storage: 300 Gbs (each)

Hardware Reqs for the Edge Cluster (3 Master + 1 Worker Nodes):

Master Nodes:

• CPUs: 72 (24 each)

• RAM: 192 (64 each)

• Storage: 4 extra disks with 200Gb each one

Worker Node: - CPUs: 12 - RAM: 16 - Storage: 4 extra disks with 200Gb each one

Software requirements

• Libvirtd/Qemu/KVM

• Kcli for the scripts.

• Some binaries oc, kubectl, tkn, yq, jq and ketall (for debugging)

Deploying the Base Hub

Deploys the Hub cluster with an NFS as a Base Storage for the requirements

git clone git@github.com:rh-ecosystem-edge/ztp-pipeline-relocatable.git
cd ztp-pipeline-relocatable/hack/deploy-hub-local
./build-hub.sh ${HOME}/openshift_pull.json 1

Bootstraping OpenShift Pipelines

Installs the necessary things to start executing the Pipelines

50

export KUBECONFIG=/root/.kcli/clusters/test-ci/auth/kubeconfig
curl -sL https://raw.githubusercontent.com/rh-ecosystem-edge/ztp-pipeline-
relocatable/main/pipelines/bootstrap.sh | bash -s

Executing the Hub Pipeline

You can customize the parameter git-revision=<BRANCH> to point to your own branch

export KUBECONFIG=/root/.kcli/clusters/test-ci/auth/kubeconfig
tkn pipeline start -n edgecluster-deployer -p ztp-container-
image="quay.io/ztpfw/pipeline:main" -p edgeclusters-config="$(cat /root/amorgant/ztp-
pipeline-relocatable/hack/deploy-hub-local/edgeclusters.yaml)" -p
kubeconfig=${KUBECONFIG} -w name=ztp,claimName=ztp-pvc --timeout 5h --use-param
-defaults deploy-ztp-hub

Creating the Edge Cluster VMs

Creates 4 VMs and the proper DNS entries for the involved network

./build-edgecluster.sh ${HOME}/openshift_pull.json 1

Executing the Edge Cluster Pipeline

You can customize the parameter git-revision=<BRANCH> to point to your own branch

export KUBECONFIG=/root/.kcli/clusters/test-ci/auth/kubeconfig
tkn pipeline start -n edgecluster-deployer -p ztp-container-
image="quay.io/ztpfw/pipeline:main" -p edgeclusters-config="$(cat /root/amorgant/ztp-
pipeline-relocatable/hack/deploy-hub-local/edgeclusters.yaml)" -p
kubeconfig=${KUBECONFIG} -w name=ztp,claimName=ztp-pvc --timeout 5h --use-param
-defaults deploy-ztp-edgeclusters

Build Images
You will need first access to the Quay Organization called ZTPFW, just ask whoever people involved
in the project.

You have some targets already in the Makefile, and today you just need to execute:

make

this will change in the future to add functionality to the Image building

51

Executing a Pipeline Step
Imagine you have an environment already deployed and you need to test the step you are working
on, think on for example the UI. For that you just need to:

• First step you updates the code in the PVC (This can change in the futurte when we embed the
code in the Container Image)

tkn task start -n edgecluster-deployer -p git-revision=<YOUR BRANCH> -p edgeclusters-
config="$(cat /root/jparrill/ztp-pipeline-relocatable/hack/deploy-hub-
local/edgeclusters.yaml)" -p kubeconfig=${KUBECONFIG} -w name=ztp,claimName=ztp-pvc
--timeout 5h --use-param-defaults fetch-from-git

• This second one executes the Pipeline Step

tkn task start -n edgecluster-deployer -p git-revision=<YOUR BRANCH> -p edgeclusters-
config="$(cat /root/jparrill/ztp-pipeline-relocatable/hack/deploy-hub-
local/edgeclusters.yaml)" -p kubeconfig=${KUBECONFIG} -w name=ztp,claimName=ztp-pvc
--timeout 5h --use-param-defaults edgecluster-deploy-ui

52

	ZTP for Factory Workflow
	Overview
	Hub and edge cluster architecture
	Prerequisites
	Base
	Networking
	Storage
	General
	The Edge-clusters YAML file

	Preparing the factory install environment
	About the factory install pipeline
	Factory install workflow
	Hub factory pipeline
	The edge factory pipeline

	Verifying the hub cluster is ready to run the factory install pipeline
	Installing the OpenShift Pipelines Operator
	Running the hub cluster factory install pipeline
	Monitoring the progress of the hub cluster factory install pipeline
	Post hub factory pipeline verification checks

	Running the edge cluster factory install pipeline
	Monitoring the progress of the edge cluster factory install pipeline
	Post edge cluster factory pipeline verification checks

	Troubleshooting a pipeline run
	Common and expected errors
	Configuring the edge cluster at the remote location
	ZTP factory install pipelines flags and arguments
	Troubleshooting
	Troubleshooting a PipelineRun
	Debugging a task execution from the container in the cluster

	Development
	Deploying the environment in Virtual
	Build Images
	Executing a Pipeline Step

